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1 Introduction 

The nature of computer science as a subject has its roots in optimization, as well as finding 

simpler and more time and space-efficient methods to solve certain problems. Despite this, 

various problems continue to exist in today’s world whose solutions would pave the way for 

more efficient results for businesses, who don’t have any exact solution that can be solved in an 

efficient amount of time (Rego, 427), one of which includes the Travelling Salesman Problem. 

Finding an efficient way to solve vehicle routing problems such as the above mentioned can be 

extremely beneficial to delivering companies to determine the route with the most amount of 

mileage in the least amount of time. Businesses that have invested in route saving programs have 

reported up to 40% savings when it comes to driving times and fuel costs (Ma). One such 

method is the use of a genetic evolutionary algorithm – an algorithm that uses randomly created 

suggestions in order to combine them, applies a certain mutation, and repeats the process for a 

certain number of generations until an approximate solution can be determined. Through this, 

different methods of combining two solutions exist, known as crossover operators. For this 

reason, the question ​‘How is an optimal found solution for the Travelling Salesman Problem 

using a Genetic Algorithm affected by the use of Two Point, Edge Recombination, and Sequential 

Constructive Crossover Operators?'​ will be assessed, as well as to evaluate the need for a 

genetic algorithm in such cases and the best crossover operator for this specific problem. 
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2 Travelling Salesman Problem 

Formulated in 1930, the Travelling Salesman Problem is a widely popular problem in the field of 

computer science and optimization mathematics. It imagines a travelling salesman and a list of 

cities, and poses the question of finding the shortest possible route (calculated through the 

shortest possible distance) for them to visit each city on the list exactly once and return to their 

city of origin (Cook).  

 

There are two broad categories of the problem: symmetric and asymmetric. A symmetric TSP 

dictates that the distance between cities x and y is the same, forming a direct graph, and allowing 

the time taken for a problem to be solved to reduce by half (Rodriguez and Ruiz, 2). On the other 

hand, the distance between cities x and y may not be the same in an asymmetric TSP. 

 

The most common solution of the problem involves using a Brute-force algorithm to generate all 

possible tours that can be taken, calculating the distances of each tour, and choosing the tour with 

the shortest total distance. Since this would require checking each and every possible solution to 

find the shortest distance, the relation between size and permutations is factorial. This can also 

be expressed as ​O(n!)​, in the form of Big-O notation, which describes the worst-case scenario of 

the algorithm. 
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No. of cities Possible tours 

5 120 

7 5,040 

10 3,628,000 

15 1,307,674,368,000 

20 2,432,902,008,176,640,000 

TABLE 1: Relation between the number of cities and possible tours 

 

Even with a computer that could check 1 million possible orderings per second, calculating the 

shortest tour for 20 cities would take 77,000 years. As size increases, the brute-force algorithm 

proves to be extremely inefficient at solving this problem.  

 

Currently, there is no efficient algorithm that can be used to find an exact solution for a large 

number of cities (Rego, 427). In the field of computational complexity, the problem falls in the 

NP, or Non-Deterministic Polynomial time class, meaning the fastest found process to derive an 

exact solution can only be solved as a polynomial time function, either being exponential, or 

factorial. However, various heuristics have been suggested in order to find an approximate 

solution. Sets containing millions of cities can be within a fraction of the time of a brute-force 

algorithm, with a percentage error of just 2-3% (Rego, 211).  

3 Existing Heuristics  

A heuristic is an algorithmic technique used to find an almost approximate solution to a problem 

using efficient methods, especially when traditional methods do not yield effective results. The 
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value of a heuristic lies in the time taken to solve a problem, especially when there is no known 

solution to the algorithm (Apter, 83).  

3.1 Nearest Neighbour 

One of the simplest heuristics of the Travelling Salesman Problem is the nearest neighbour 

algorithm. It functions as a greedy algorithm, taking the lowest local optimum step in the hopes 

of finding the lowest global optimum solution. The steps for the algorithm are as follows:  

 

1. Begin at a city C 

2. Find all connecting edges to C and select the one with the shortest distance 

3. Mark the new city as C 

4. Mark the previous city as visited 

5. If all cities have been searched, terminate the program 

6. Repeat from step 2 

 

While easy to implement and being very fast, the Nearest Neighbour heuristic suffers from its 

"greedy" nature, as the solution resulting in the lowest local optimum may not always be the 

same as a global optimum. 
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FIGURE 1: Difference between local and global optimum in a search space 

 

As shown by figure 1, if found at the local minimum, the Nearest Neighbour algorithm would 

not do anything, since any "nearest" choice found both on its left and right yield a higher result. 

Therefore, the program would stop, even though the exact solution (global minimum) hasn't been 

found.  

 

The nearest neighbour heuristic also only performs well with less than 50 cities. As the number 

of cities supersedes that limit, the quality of the performance and solution worsens (AlSalibi et 

al). Since real-life applications of the problem require a number of nodes much larger than 50, it 

is not an optimal heuristic for all cases of the Travelling Salesman Problem.  

 

The Nearest Neighbour represents an important idea with the Travelling Salesman Problem and 

other optimization problems: the balance between​ ​exploitation versus exploration. Exploitation 

refers to the idea of choosing the best possible value from a limited search space with the hopes 

of reaching a global optimum. However, only a local optimum is often reached. Exploration, on 
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the other hand, consists of diversifying the search by picking choices that may result in a better 

solution. This prevents the problem of being trapped in a local optimum and allows for more 

choices to be explored, possibly resulting in the global optimum. One such example of 

exploration is a genetic algorithm. 

4 Genetic Algorithm 

A genetic, or evolutionary algorithm, is a search heuristic that mimics the process of natural 

evolution, including elements of hereditary, variation, and selection, with the intent of reaching 

an optimal solution through repetition across a number of generations. Developed by John 

Holland in 1975, the main reason for their popularity is robustness, or as explained by researcher 

David E. Goldberg, their "balance between efficiency and efficacy" that allows them to be 

universal and thrive in different environments and problems. (Goldberg, 89). This demonstrates 

exploration since various solutions of differing quality must be taken into account for the sake of 

finding a value as close to the global minimum as possible.  

 

Genetic algorithms function by creating a population of certain solutions, or chromosomes, 

selecting the best-fit solutions, combining and mutating them slightly for the purpose of 

diversification, and repeating the process over a number of generations. In the context of the 

Travelling Salesman Problem, a chromosome is a string of genes, or cities, that forms a solution. 

A population refers to a collection of all chromosomes that are involved in the search (Fischer). 

These chromosomes are then selected and modified through the use of operators.  
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4.1 Operators 

The main process of selecting the fittest solutions and modified their contents for the purpose of 

reaching an optimal solution is done through the use of operators. Generally, three main 

operators known as selection, mutation, and crossover are used to execute a genetic algorithm. 

4.1.1 Selection 

The selection operator is necessary for finding and picking the best solutions from a population 

for the purpose of crossover and mutation. Taking inspiration from Darwin's theory of evolution 

and natural selection, the majority of genetic algorithms choose chromosomes on the basis of 

their fitness. The fitness for a chromosome can be evaluated as the inverse of its found distance. 

Thereby, the higher the fitness value, the more likely the selection operator will choose that 

chromosome. This form of selection is known as ​elitist selection​ (​AlSalibi et al, 35​). 

4.1.2 Mutation 

Mutation introducing a small change to the resulting chromosome from the crossover with a 

certain probability. For instance, a common mutation is ​flip mutation​ (Soni and Kumar, 4520), 

which involves selecting two random points of a solution and exchanging values. For instance, if 

flip mutation were to be caused on C​1​ with the random points highlighted, the resulting value 

would be C​m​. 
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C​1​ = 1 2 ​3​ 4 5 ​6​ 7 

C​m​ = 1 2 6 4 5 3 7 

 

While seemingly small, mutation is vital for the success of a genetic algorithm for the purpose of 

diversification and preventing stagnation of certain solutions. However, the rate of mutation is 

kept small (0.01 - 0.05), in order to prevent it from overpowering and worsening good solutions 

created through crossover. 

5 Crossover 

Perhaps the most important element of a genetic algorithm, crossover regulates the 

recombination of the various chromosomes in a population in order to ensure a diverse pool of 

solutions tending towards a certain value. 

 

In order to examine the characteristics of each crossover operator, the following set of cities will 

be used in the form of a cost matrix (Ahmed, 99). The distance from a city at one position to a 

city at another can be found by linking the horizontal versus the vertical node. For instance, the 

distance between nodes 1 and 7 (c​17​) will be 8. 
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Node 1 2 3 4 5 6 7 

1 999 75 99 9 35 63 8 

2 51 999 86 46 88 29 20 

3 100 5 999 16 28 35 28 

4 20 45 11 999 59 53 49 

5 86 63 33 65 999 76 72 

6 36 53 89 31 21 999 52 

7 58 31 43 67 52 60 999 

TABLE 2: Cost matrix of an example set of cities 

 

Let the pair of parent chromosomes to be used for recombination will be P​1​: (1, 4, 7, 5, 2, 6, 3) 

with distance 391 and P​2​: (1, 2, 4, 7, 6, 3, 5) with distance 433. 

5.1 Two Point Crossover 

Perhaps the simplest crossover operator, Two Point Crossover (TPX) begins by randomly 

creating two partition points at the same distance from each parent chromosome. The data from 

each chromosome is then swapped, creating two new child solutions. TPX is implemented using 

the examples of P​1​ and P​2​:  

P​1​: 1 4 | 7 5 2 | 6 3 

P​2​: 1 2 | 4 7 6 | 3 5 

 

C​1​: 1 4 4 7 6 6 3 

C​2​: 1 2 7 5 2 3 5  
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When TPX is tried on P​1​ and P​2​, an error arises that conflicts with the requirements of the 

Travelling Salesman Problem: each city be visited, and each city be visited only once. In C​1​, the 

cities 4 and 6 are repeated, while in C​2​, the cities 2 and 5 are repeated. To stop this problem for 

occurring, the first occurrence of a repeating city in the first child solution is highlighted, and 

replaced with the first occurrence in the next solution. For instance:  

 

C​1​: 1 ​4​ 4 7 ​6​ 6 3 

C​2​: 1 ​2​ 7 ​5​ 2 3 5  

 

C​1​: 1 2 4 7 5 6 3 

C​2​: 1 4 7 6 2 3 5  

 

The resulting values of C​1​ and C​2​ are 487 and 406 respectively. This example shows the 

ineffectiveness of TPX to deliver a better solution than P​1​ and P​2​. Its strength lies in its 

simplicity, as well as its ease of computation. It has the added benefit of maintaining the fit 

qualities of a parent chromosome since the first two cities of each path are the same in C​1​ and C​2 

as they are in P​1​ and P​2​. However, a lack of diversity and similarity to the parent chromosomes 

means that stagnation may occur, since not enough of the pattern is being developed to create 

newer and better solutions (Imtiaz, 20).  
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5.2 Edge Recombination Crossover  

The Edge Recombination Crossover (ERX) operator, on the other hand, employs a different 

strategy to the crossover of two parent solutions. Firstly, only a single chromosome is created, as 

opposed to two children from TPX. A much greater mathematical approach is employed with 

this crossover, through the use of constructing an edge map.  

 

An edge map lists out the nearest node on the left and right of each node showcased in both 

parent solutions while ignoring duplicates. 

 

Node Edge List 

1 4, 3, 2, 5 

2 5, 6, 1, 4 

3 6, 1, 5 

4 1, 7, 2 

5 2, 7, 3, 1 

6 2, 3, 7 

7 4, 5, 6 

TABLE 3: Edge map that can be constructed using parent nodes P​1​ and P​2​.  

 

From here on, the chromosome is constructed by taking the edges of the nodes into 

consideration. The next possible city for a node to choose can be either dictated by the number of 

edges of the next node, with the one with a lower number of edges being selected, or chosen 
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randomly (Whitley, Starkweather & Shaner). ERX will now be used with P​1​ and P​2​ in order to 

generate an expected offspring. 

 

1. Node 1 is the starting point of the tour. The partially mapped chromosome reads {1}. 

2. Node 1 has edges 4, 3, 2, 5. Edges 5 and 2 are removed due to them having 4 edges each. 

Node 3 is chosen at random. The partially mapped chromosome reads {1, 3}. 

3. Node 3 has edges 6, 5. Node 6 is chosen since it has less edges than Node 5. The partially 

mapped chromosome reads {1, 3, 6}. 

4. Node 6 has edges 2, 7. Node 7 is chosen since it has less edges than Node 2. The partially 

mapped chromosome reads {1, 3, 6, 7}. 

5. Node 7 has edges 4, 5. Node 4 is chosen since it has less edges than Node 5. The partially 

mapped chromosome reads {1, 3, 6, 7, 4}. 

6. Node 4 has only one remaining edge that is unvisited, which is Node 2. The partially 

mapped chromosome reads {1, 3, 6, 7, 4, 2}. 

7. Node 2 has only one remaining edge that is unvisited, which is Node 5. The partially 

mapped chromosome is now the full chromosome C​1​ which is 1, 3, 6, 7, 4, 2, 5. 

 

The resulting cost of C​1​ is 486, which is worse than both parent nodes that it started from. It must 

also be considered that it is possible value, and often depends on the random choice that is taken 

at times during the crossover.  

 



15 

5.3 Sequential Constructive  

Developed in 2013 by Zakir Ahmed, Sequential Constructive Crossover (SCX) is the newest 

operator out of the group being tested. His work serves the basis of using the better edges from 

each parent node, as well as constructing edges that are not present in both parents' structure 

(Ahmed, 99). It also defines the term 'legitimate node' as the node in each parent that has not 

been visited yet. By comparing the possible choices of the next node to be taken, SCX also has a 

quantitative advantage over the previously mentioned operators. Using P​1​ and P​2​, SCX is 

conducted using the following steps. The distance from city x to y is transcribed as c​xy​. 

 

1. Start from Node 1. The 'legitimate' nodes from this point are 4 and 2. Since c​14​ (9) < c​12 

(75), 4 is selected as the next node. The partially mapped chromosome reads {1, 4}. 

2. The 'legitimate' node from Node 4 is 7 in both parents, so 7 is selected as the next node. 

The partially mapped chromosome reads {1, 4, 7}. 

3. The 'legitimate' nodes from Node 7 are 5 in P​1​ and 6 in P​2​. Since c​75​ (52) < c​76​ (60), 5 is 

selected as the next node. The partially mapped chromosome reads {1, 4, 7, 5}. 

4. The 'legitimate' nodes from Node 5 are 2 in P​1​ and none in P​2​ (1 does not count since that 

would mean ending the cycle without visiting all nodes). Therefore, the first 'legitimate' 

node is considered from the set {1, 2, 3, 4, 5, 6, 7}, which is an ascending continuation of 

all nodes from the last possible point, which was 1. Therefore, the 'legitimate' node for 

Node 5 is 2 for P​2​. Since the values match, 2 is selected as the next node. The partially 

mapped chromosome reads {1, 4, 7, 5, 2}. 
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5. The 'legitimate' node from Node 2 is 6 in both parents (4 and 7 have already been visited 

for P​2​, so 6 is selected as the next node. The partially mapped chromosome reads {1, 4, 7, 

5, 2, 6}. 

6. The 'legitimate' node from Node 6 is 3 in both parents, so 3 is selected at the next node. 

The partially mapped chromosome, now the completed chromosome C​1​, reads {1, 4, 7, 5, 

2, 6, 3} 

 

C​1​ has resulted in the same value as P​1​, which has a value 391. This is expected with a crossover 

operator, especially when there is a lack of diversity between the two parent solutions, which is 

usually different when conducting an experiment. However, it was able to determine P​1​ as 

having qualities that were beneficial and necessary to carry onto the next generation due to 

quantitative comparisons, showing its effectiveness. 

 

These specific crossover operators have been chosen due to the stark differences existing 

between all of them in terms of their complexity, process of recombination and possible results 

as shown with the sample Parent genes P​1​ and P​2​. 

6 Investigation 

An experiment will be conducted to further investigate the research question. This involves using 

a program in Matlab-2009 ra (Kirk) to simulate the problem with three separate crossover 

operators. The program will be run on a Mid-2012 Macbook Pro with a 2.9Ghz quad-core Intel 

Core i7 processor with 8GB of Ram and Intel HD Graphics 4000. The program will use four 
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known test-cases for the Travelling Salesman Problem: ST 70 (70 cities), FTV 100 (100 cities) , 

FTV 170 (170 cities) and TSP 225 (225 cities). ST 70 and TSP 225 are symmetric, while 

FTV100 and FST170 are asymmetric. The best solution for all cases are 675, 3919, 1788, 2755 

respectively. 

 

These test cases come from a series available online by author and researcher Gerhard Reinelt 

(Reinelt). ST70 was chosen as a benchmark, or a way to spot the limits of each crossover 

operator with a relatively easy problem. TSP 225 was chosen to see if the quality of a solution 

would diverge drastically over such a difference in size. FTV 100 and FTV 170 were both 

examples of an asymmetric route, and were used to see if the difference in distance between two 

cities would affect the quality of a solution as well as the time taken to find the solution. For 

instance, SCX dictates that the next choice of a 'legitimate' node be made based on a cost 

analysis, where the order of the cities can affect the total distance more significantly. 

 

Crossover and mutation operators have been kept at 0.8 and 0.01 respectively. The mutation rate 

is kept at a lower number to ensure the possibility of it occurring, but not cause it to interfere 

with the actions of the crossover operator. The maximum number of generations will be kept at 

50000 to allow for an ample number of turns before a "best-found" solution for each crossover 

operator is found. The program will deliver an output of the reported "best distance" calculated 

in each instance, as well as the time taken to solve the problem. Each crossover operator will be 

tested five times for each case, and the percentage error of the problem will be calculated using 

the following equation. 
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ercentage Error  ✕ 100P = actual solution
found solution − actual solution  

 

Through this, the mean, as well as the lowest percentage error (best) of all five tests will be 

calculated and reported, along with its standard deviation. 

 

It is hypothesised that the TPX should be able to both find the optimal solution the best (and 

have the least percentage error), as well as being the fastest in finding the optimal solution due to 

its simplicity and sheer speed of recombination. ERX will be the slowest due to the steps 

required to create a combination being lengthy and increasing the time taken to solve a certain 

tour. SCX will be placed in the middle of both operators, as it produces a recombination that 

takes into account the distance between the nodes, but requires a lengthy process to do so. 

6.1 Results 

Example of error calculation: 

An example of the equation used to calculate the best found solution of five trials for the 

FTV100 of ERX is shown. 

ound solution 299.27 f = 5    

ctual solution 788  a = 1  

ercentage Error 00P =  1788
5299.27 − 1788 × 1  

96.38%= 1  
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Crossover 

operator 

ST 70 FTV 100 FTV 170 TSP 225 

Mean 

(Std. 

Dev) 

Best Mean 

(Std. 

Dev) 

Best Mean 

(Std. 

Dev) 

Best Mean 

(Std. 

Dev) 

Best 

TPX 12.59 

(1.25) 

10.37 62.73 

(3.32)  

56.14 81.17 

(10.94)  

78.12 100.06 

(14.95)  

97.13 

ERX 65. 32 

(6.93)  

61.29  202.14 

(12.93) 

196.38  257.17 

(20.02)  

248.89 309.76 

(22.14)  

306.31 

SCX 2.14 

(0.29)  

1.68 13.21 

(1.97) 

10.98 35.01 

(10.34) 

28.27 44.92 

(6.68) 

43.88 

TABLE 4: Percentage error of best-found solution for each crossover operator in 4 test cases. 

Crossover 

operator 

ST 70 FTV 100 FTV 170 TSP 225 

TPX 327.84  404.92 652.87  1179.17  

ERX 7081.23  9397.46 12024.65  15812.44 

SCX 1392.88  1905.96  2682.68  4097.29  

TABLE 5: Time taken to find solution (seconds) 
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6.2 Analysis 

The experiment conducted shows that none of the crossover operators were able to find the exact 

solution to each case taken. However, in terms of delivering the optimal solution with the least 

percentage of error, SCX was the best, followed by TPX, and ERX. In terms of the total time 

taken to find the optimal solution, TPX was the best, with SCX and ERX following. Based on 

this, the hypothesis mentioned before was only half correct, since SCX was able to produce a 

better solution compared to its competitors, but TPX was able to deliver the fastest solution to 

the problem.  

 

The likely reason for this result is due to the process used by SCX to combine two parent 

solutions to make a child solution. The main purpose of a crossover operator is to generate a 

solution that maintains the benefitting characteristics of both parents' structure, while still 

changing to form to create as high a fitness value as possible for the following generation. SCX 

is able to accomplish all of this by taking into account the cost of the next possible city to be 

taken, and choosing the city that results in an overall lower tour length. Despite its effectiveness, 

the comparison needed between comparing the adjacent nodes scales up quickly as the number 

of cities increases, resulting in a program that was not the fastest out of the three tested. 

 

TPX on the other hand, is extremely easy to implement and use. Requiring only two points of 

crossover to create two new solutions is a much faster process compared to constructing the 

edges of each crossover and comparing similar results. However, it's main fault lies in its 
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ineffectiveness, since the operator is often not able to create solutions that are diverse enough. 

The software used during the experiment also showed TPX as being the fastest to reach a 

"best-found" solution, but then staying at that general area and "plateauing". Due to not having 

diverse enough solutions, or a practical reasoning for the steps required to crossover, TPX 

resulted in only the second-best solution. 

 

The likely reason for the poor performance of ERX is the steps involved in actually executing the 

algorithm, and the amount of processing power required to execute it efficiently. ERX requires 

the construction of an edge map of each of the nodes, which while works fine through the use of 

the 7-city cost matrix used above, is much more processor intensive as the number of cities 

increases. Furthermore, even with the comparison of edges, the decision made by the operator 

was often just a random choice. An improvement on the crossover would be to use the method of 

comparison from SCX and implement that technique when deciding the next edge to be taken for 

ERX. This would allow for more quantitative comparisons that would help the performance of 

the program. 

 

Interestingly, asymmetry had no noticeable effect in the time taken to find an optimal solution, 

which followed a trend of increasing with the number of nodes. However, the quality of the 

found solution did suffer from both asymmetry as well as the number of cities. The best 

percentage error on for TPX on ST 70 was 10.37, and on FTV 170 was 78.12. For a 100 city 

increase, the percentage error increased by nearly 68 points. Such a harsh increase shows the 
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worsening of the found solution of genetic algorithms with larger sets, especially when the right 

crossover operator is not used.  

6.3 Limitations 

Limitations had been apparent after the investigation was completed. One of these was the 

hardware used to conduct the experiment. The Matlab program was run on a mid-2012 Macbook 

Pro having a 4th generation Intel Processor with integrated Intel HD 4000 graphics. While fine 

for normal tasks, the graphics processing unit (GPU) of the computer used was never intended to 

be used for large scale combinatorial problems with population sizes of 50,000. This increased 

number of calculations was extremely intensive on the processor and significantly slowed down 

the process, requiring a time of almost five hours to find an optimal solution for the largest test 

case (TSP 225) for the ERX operator. Likewise, both ERX and SCX require the calculation of 

edge maps and comparisons between next possible solutions, and as such, were limited by the 

low power of the processor. While the resulting calculations serve the purpose of the 

investigation for the sake of comparison, using a computer with a dedicated GPU would have 

improved upon the speed of the process, and allowed for experimentation with more test cases. 

 

One such example is NVIDIA's Kepler series of high performance computing architecture, 

which are designed with the purpose of being able to conduct experiments with large quantities 

of calculations, such as those in the Travelling Salesman Problem. ("KEPLER THE 

WORLD'S"). These processors have the benefit of taking advantage of their multiple cores and 

minimizing on idle time in order to advance efficiency. 
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7 Conclusion 

Concluding the question, ​'How is an optimal found solution for the Travelling Salesman Problem 

using a Genetic Algorithm affected by the use of Two Point, Edge Recombination, and Sequential 

Constructive Crossover Operators?'​ again, shows SCX as being the best crossover operator 

compared to TPX and ERX in terms of finding an optimal solution to the problem. However, 

when considering the time taken to find an optimal solution, TPX was found to be the fastest 

operator, with SCX and ERX following. Deciding on an operator depends upon the number of 

nodes, amount of time available, and the desired quality of a solution.  

 

The results of this experiment are relevant in the field of the Travelling Salesman Problem, but in 

the whole general area of combinatorial optimization. For instance, a problem had arisen in the 

Dutch Town of New Holland where telephone boxes needed to be added by the postal service. 

With a set route and a maximum working time of 445 min, the problems qualities are extremely 

similar to that of the Travelling Salesman Problem. Other more diverse applications also exist, 

such as computer wiring and gene modification, since both those require the use of a path to be 

taken and finding that shortest path in order to maximize the efficiency of the algorithm being 

used. (Lenstra) 

 

It is also important to consider that this is in no way an exhaustive solution to the correct way of 

solving this problem. The number of crossover operators is a list that continues to increase 

frequently with inspiration from the natural world (k-Point Crossover) or innovation through the 

 



24 

combination of the principle of various operators to form one (Modified Sequential Constructive 

Crossover). This essay serves the purpose of determining the quality of just three crossover 

operators based on their algorithmic and visual complexities, and viewing how that translates 

into performance.  

 

Genetic Algorithms have a future in today's society as precursors to Machine Learning and 

Artificial Intelligence. David. E. Goldberg, an expert in the field who has been studying genetic 

algorithms for over three decades, has mentioned that these algorithms are the best step for 

computing in the future, as they are being able to describe innovation in a quantitative rather than 

qualitative manner. They are able to owe their success to using a principle found in the natural 

world in an application where the answer might not necessarily be known, helping pave the way 

for innovative solutions for problems that continue to remain unsolved in the realm of Computer 

Science.  
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